MENU

Z4

March 6, 2025 • • 阅读设置

  • [ ]

Z4

original form

$$ \begin{aligned} \mathcal{L}m \gamma{i j}= & -2 \alpha K_{i j}, \ \mathcal{L}m K{i j}= & -D_i D_j \alpha+\alpha\left(R_{i j}+2 D_{(i} {Z}{j)}-2 K{i k} Kk{ }j+(K-2 \Theta) K{i j}\right) \ & +4 \pi \alpha\left(\gamma_{i j}(S-\rho)-2 S_{i j}\right)-\alpha \kappa_1\left(1+\kappa_2\right) \gamma_{i j} \Theta, \ \mathcal{L}_m \Theta= & \frac{\alpha}{2}\left(R+K2-K_{i j} K{i j}-16 \pi \rho-2 \Theta K+2 D_i {Z}i-2 {Z}i D_i \ln \alpha\right)-\alpha \kappa_1\left(2+\kappa_2\right) \Theta, \ \mathcal{L}_m {Z}_i= & \alpha\left(D_j Kj{ }_i-D_i K-8 \pi j_i+D_i \Theta-2 {Z}_j K^j{ }_i-\Theta D_i \ln \alpha-\kappa_1 {Z}_i\right) . \end{aligned} $$

Omiting non-principal items (for Z4c)

$$ \begin{aligned} \mathcal{L}m \gamma{i j}= & -2 \alpha K_{i j}, \ \mathcal{L}m K{i j}= & -D_i D_j \alpha+\alpha\left(R_{i j}+2 D_{(i} {Z}{j)}-2 K{i k} Kk{ }j+(K{\color{blue}-2 \Theta}) K{i j}\right) \ & +4 \pi \alpha\left(\gamma_{i j}(S-\rho)-2 S_{i j}\right)-\alpha \kappa_1\left(1+\kappa_2\right) \gamma_{i j} \Theta, \ \mathcal{L}_m \Theta= & \frac{\alpha}{2}\left(R+K2-K_{i j} K{i j}-16 \pi \rho+2 D_i {Z}i{\color{blue}-2 \Theta K-2 {Z}i D_i \ln \alpha}\right)-\alpha \kappa_1\left(2+\kappa_2\right) \Theta, \ \mathcal{L}_m {Z}_i= & \alpha\left(D_j Kj{ }_i-D_i K-8 \pi j_i+D_i \Theta{\color{blue}-2 {Z}_j K^j{ }_i-\Theta D_i \ln \alpha}-\kappa_1 {Z}_i\right) . \end{aligned} $$

Ref: CCZ4(Ried 2023), Z4c(Bernuzzi 2010)

Reid’s version

$$ \begin{aligned} \gamma_{i j} & =e{4 \chi} \hat{\gamma}{i j} \ K{i j} & =e{4 \chi}\left(\hat{A}{i j}-\frac{1}{3} \hat{\gamma}{i j} K\right) \end{aligned} $$

Reid(also NR Shapiro), 3+1 Gourgoulhon, CCZ4_Alic, Z4c_Bernuzzi

$$ e{4\chi }=\Psi{4}=\phi{-2} {\color{grey} =\chi{-1}} \to \chi = \ln \Psi =-\frac{1}{2} \ln \phi{\color{grey}=-\frac{1}{4}\ln \chi} $$

Comformal factor

$$ {\cal L}{m} \chi=-\frac{1} {6} \alpha K+\frac{1} {6} \hat{D}{k} \beta^{k}, $$

Metric

$$ \mathcal{L}{m} \hat{\gamma}{i j}=-2 \alpha\hat{A}{i j}-\frac{2} {3} \hat{\gamma}{i j} \hat{D}_{k} \beta^{k} $$

trace of K

(derivation)

$$ \mathcal{L}m K=\gamma^{i j} \mathcal{L}m K{i j}+K{i j} \mathcal{L}_m \gamma^{i j}, $$

符合!上面两项都是一样的

BSSN: from ADM eqs

$$ {\cal L}{m} K{i j}=-D_{i} D_{j} \alpha+\alpha\left( R_{i j}+K K_{i j}-2 K_{i k} K^{k} {}_{j} \right)+4 \pi\alpha\left[ \gamma_{i j} \left( S-\rho\right)-2 S_{i j} \right] $$

then

$$ {\gamma}{i j} {\cal L}{m} K{i j}=-D_{i} D{i} \alpha+\alpha\left( R+K{2}-2 K_{i j} K{i j} \right)+4 \pi\alpha\left( S-3 \rho\right) $$

$$ \begin{aligned} \mathcal{L}m K & =\mathcal{L}m\left(\gamma^{i j} K{i j}\right) = \gamma^{i j} \mathcal{L}m K{i j} + K{i j}\mathcal{L}m \gamma{i j} \ & =\gamma{i j} \mathcal{L}m K{i j}{\color{red}+}2 \alpha K{i j} K{i j} \ & =-D2 \alpha+\alpha\left(R+K^2\right)+4 \pi \alpha(S-3 \rho) \end{aligned} $$

补充第二行:

$$ \begin{aligned} \mathcal{L}m \gamma{i j}&=-2 \alpha K_{i j} \ \gamma{i k} \gamma{j l} \mathcal{L}m \gamma{k l}&=-2 \alpha K{i j} \ \gamma{i k}[\mathcal{L}m(\underbrace{\gamma^{j l} \gamma{k l}}{\delta^j_k})-\gamma{k l} \mathcal{L}_m \gamma^{j l}]&=-2 \alpha K{i j} \ -\deltai_l\mathcal{L}_m \gamma{j l}&=-2 \alpha K{i j}. \ \mathcal{L}_m \gamma{i j}&=+\ 2 \alpha K{i j} \end{aligned} $$

Using Hamiltonian constraint

with

$$ K_{i j} K{i j}=\left(A_{i j}+\frac{K}{3} \gamma_{i j}\right)\left(A{i j}+\frac{K}{3} \gamma{i j}\right)=A_{i j} A{i j}+\frac{K2}{3}=\tilde{A}_{i j} \tilde{A}{i j}+\frac{K^2}{3} $$

$$ H=\frac{1}{2}\left(R+K2-K_{i j} K{i j}-16 \pi \rho \right)=\frac{1}{2}\left(R+\frac{2}{3}K2-\hat{A}_{i j} \hat{A}{i j}-16 \pi \rho \right)=0 $$

finally

$$ \mathcal{L}{m} K=-D^{2} \alpha+\alpha\left( \hat{A}{i j} \hat{A}{i j}+\frac{1} {3} K{2} \right)+4 \pi\alpha\left( S+\rho\right) $$

符合!

CCZ4:from Z4

$$ \begin{aligned} \mathcal{L}m K{i j}= & -D_i D_j \alpha+\alpha\left(R_{i j}+2 D_{(i} {Z}{j)}-2 K{i k} K^k{ }j+(K-2 \Theta) K{i j}\right) \ & +4 \pi \alpha\left(\gamma_{i j}(S-\rho)-2 S_{i j}\right)-\alpha \kappa_1\left(1+\kappa_2\right) \gamma_{i j} \Theta \end{aligned} $$

$$ \mathcal{L}m K=\gamma^{i j} \mathcal{L}m K{i j}+K{i j} \mathcal{L}_m \gamma^{i j}, $$

$$ \begin{aligned} \mathcal{L}m K= & -D_i Di \alpha+\alpha\left(R+2 D_i {Z}i-2 K^{l m} K{l m}+(K-2 \Theta) K\right)-8 \pi \alpha\left(S-\frac{3}{2}(S-\rho)\right) \ & -3 \alpha \kappa_1\left(1+\kappa_2\right) \Theta+2 \alpha K_{i j} K{i j}, \ = & -D_i Di \alpha+\alpha\left(R+2 D_i {Z}i+K2-2 \Theta K+4 \pi(S-3 \rho)\right)-3 \alpha \kappa_1\left(1+\kappa_2\right) \Theta, \ = & -D_i Di \alpha+\alpha R+\alpha\left(K2-2 \Theta K\right)+2 \alpha D_i {Z}^i+4 \pi \alpha(S-3 \rho)-3 \alpha \kappa_1\left(1+\kappa_2\right) \Theta . \end{aligned} $$

符合!

Z4c: from Z4_o:

$$ \begin{aligned} \mathcal{L}m K{i j}= & -D_i D_j \alpha+\alpha\left(R_{i j}+2 D_{(i} {Z}{j)}-2 K{i k} K^k{ }j+(K{\color{blue}-2 \Theta}) K{i j}\right) \ & +4 \pi \alpha\left(\gamma_{i j}(S-\rho)-2 S_{i j}\right)-\alpha \kappa_1\left(1+\kappa_2\right) \gamma_{i j} \Theta \end{aligned} $$

$$ \begin{aligned} \mathcal{L}m K= & -D_i Di \alpha+\alpha\left(R+2 D_i {Z}i-2 K^{l m} K{l m}+(K{\color{blue}-2 \Theta}) K\right)-8 \pi \alpha\left(S-\frac{3}{2}(S-\rho)\right) \ & -3 \alpha \kappa_1\left(1+\kappa_2\right) \Theta+2 \alpha K_{i j} K{i j}, \ = & -D_i Di \alpha+\alpha\left(R+2 D_i {Z}i+K2{\color{blue}-2 \Theta K}+4 \pi(S-3 \rho)\right)-3 \alpha \kappa_1\left(1+\kappa_2\right) \Theta, \ = & -D_i Di \alpha+\alpha R+\alpha\left(K2{\color{blue}-2 \Theta K}\right)+2 \alpha D_i {Z}^i+4 \pi \alpha(S-3 \rho)-3 \alpha \kappa_1\left(1+\kappa_2\right) \Theta . \end{aligned} $$

进一步可以转换为Z4c_Bernuzzi 2010:

$$ \begin{aligned} \mathcal{L}m K= & -D_i Di \alpha+\alpha R+\alpha\left(K2{\color{blue}-2 \Theta K}\right)+2 \alpha D_i {Z}i+4 \pi \alpha(S-3 \rho)-3 \alpha \kappa_1\left(1+\kappa_2\right) \Theta \ = & -D_i Di \alpha+\alpha (R+K2)+2 \alpha D_i {Z}i+4 \pi \alpha(S-3 \rho)-3 \alpha \kappa_1\left(1+\kappa_2\right) \Theta \end{aligned} $$

with Hamiltonian constraint ($\mathcal{L}m \Theta$)

$$ \mathcal{L}m \Theta= \frac{\alpha}{2}\left(R+K^2-K{i j} K{i j}-16 \pi \rho+2 D_i {Z}i{\color{blue}-2 \Theta K-2 {Z}i D_i \ln \alpha}\right)-\alpha \kappa_1\left(2+\kappa_2\right) \Theta\ {\color{blue}=0} $$

then

$$ \begin{aligned} \mathcal{L}_m K= & -D_i Di \alpha+\alpha (R+K2)+2 \alpha D_i {Z}i+4 \pi \alpha(S-3 \rho)-3 \alpha \kappa_1\left(1+\kappa_2\right) \Theta \ = & -D_i Di \alpha+\alpha ( \hat{A}{ij}\hat{A}{ij}+\frac{1}{3}K2+16\pi\rho+2\kappa_1(2+\kappa_2)\Theta)+4 \pi \alpha(S-3 \rho)-3 \alpha \kappa_1\left(1+\kappa_2\right) \Theta\ = & -D_i Di \alpha+\alpha ( \hat{A}^{ij}\hat{A}{ij}+\frac{1}{3}K^2)+4 \pi \alpha(S+ \rho)+ \alpha \kappa_1\left(1-\kappa_2\right) \Theta \end{aligned} $$

符合!

同理可以接着改造CCZ4,这里似乎并不可以

$$ \mathcal{L}m \Theta= \frac{\alpha}{2}\left(R+K^2-K{i j} K{i j}-16 \pi \rho+2 D_i {Z}i{\color{blue}-2 \Theta K-2 {Z}^i D_i \ln \alpha}\right)-\alpha \kappa_1\left(2+\kappa_2\right) \Theta $$

$$ \begin{aligned} \mathcal{L}m K= & -D_i Di \alpha+\alpha R+\alpha\left(K2{\color{blue}-2 \Theta K}\right)+2 \alpha D_i {Z}i+4 \pi \alpha(S-3 \rho)-3 \alpha \kappa_1\left(1+\kappa_2\right) \Theta \ = & -D_i Di \alpha+\alpha (K{ij}K{ij}+16\pi\rho+2 {Z}i D_i \ln \alpha+2\kappa_1(2+\kappa_2)\Theta))+4 \pi \alpha(S-3 \rho)-3 \alpha \kappa_1\left(1+\kappa_2\right) \Theta \ =& -D_i Di \alpha+\alpha ( \hat{A}{ij}\hat{A}_{ij}+\frac{1}{3}K2 {\color{navy}+2 {Z}i D_i \ln \alpha})+4 \pi \alpha(S+ \rho)+ \alpha \kappa_1\left(1-\kappa_2\right) \Theta \end{aligned} $$

$\Theta$ term

CCZ4, direct from Z4

$$ \begin{aligned} \mathcal{L}m \Theta= & \frac{\alpha}{2}\left(R+K^2-K{i j} K{i j}-16 \pi \rho+2 D_i {Z}i{\color{blue}-2 \Theta K-2 {Z}i D_i \ln \alpha}\right)-\alpha \kappa_1\left(2+\kappa_2\right) \Theta \ =& \frac{\alpha}{2}\left(R+2 D_i {Z}i-\hat{A}_{i j} \hat{A}{i j}+\frac{2}{3} K2 {\color{navy}-2 \Theta K-2 {Z}^i D_i \ln \alpha}-16 \pi \rho\right)-\alpha \kappa_1\left(2+\kappa_2\right) \Theta \end{aligned} $$

符合!

$A_{ij}$ term

BSSN: $K_{ij}$展开

$$ \begin{aligned} \mathcal{L}m K{i j}= & -D_i D_j \alpha+\alpha\left(R_{i j}+K K_{i j}-2 K_{i k} Kk{ }_j\right)+4 \pi \alpha\left[\gamma_{i j}(S-\rho)-2 S_{i j}\right], \ = & -D_i D_j \alpha+\alpha\left[R_{i j}+K\left(\hat{A}{i j} e^{4 \chi}+\frac{1}{3} \hat{\gamma}{i j} e^{4 \chi} K\right)\right]+4 \pi \alpha\left[\gamma_{i j}(S-\rho)-2 S_{i j}\right] \ & -2 \hat{\gamma}{k m} \alpha e{-4 \chi}\left(\hat{A}_{i k} e{4 \chi}+\frac{1}{3} \hat{\gamma}{i k} e^{4 \chi} K\right)\left(\hat{A}{m j} e{4 \chi}+\frac{1}{3} \hat{\gamma}_{m j} e{4 \chi} K\right) \ = & -D_i D_j \alpha+\alpha\left[R_{i j}+e{4 \chi}\left(-\frac{1}{3} K \hat{A}_{i j}+\frac{1}{9} K2 \hat{\gamma}{i j}-2 \hat{A}{i k} \hat{A}^k{ }_j\right)\right]+4 \pi \alpha\left[\gamma_{i j}(S-\rho)-2 S_{i j}\right] . \end{aligned} $$

with

$$ \begin{aligned} \mathcal{L}m K{i j} & =\mathcal{L}m\left(\hat{A}{i j} e{4 \chi}+\frac{1}{3} \hat{\gamma}_{i j} e{4 \chi} K\right) \ & =e{4 \chi}\left[\mathcal{L}m \hat{A}{i j}+\frac{1}{3} \hat{\gamma}_{i j} \mathcal{L}m K+\frac{1}{3} K \mathcal{L}m \hat{\gamma}{i j}+\mathcal{L}m \chi\left(4 \tilde{A}{i j}+\frac{4}{3} \hat{\gamma}{i j} K\right)\right] \end{aligned} $$

get

$$ \begin{aligned} \mathcal{L}m \hat{A}{i j}= & e{-4 \chi}\left[-D_i D_j \alpha+ \alpha R_{i j}+4 \pi \alpha\left(\gamma_{i j}[S-\rho]-2 S_{i j}\right)\right. \ & \left.-\frac{1}{3} \gamma_{i j}\left(-D2 \alpha+\alpha\left[\hat{A}_{i j} \hat{A}{i j}+\frac{1}{3} K2+4 \pi(S+\rho)-K^2\right]\right)\right] \ & +\alpha\left[K \hat{A}{i j}-2 \hat{A}{i k} \hat{A}^k{ }_j\right]-\frac{2}{3} \hat{A}_{i j} \hat{D}_m \betam . \end{aligned} $$

substitute the Hamiltonian constraint for R to find

$$ R_{i j}=R_{i j}{\mathrm{T F}}+\frac{1} {3} \gamma_{i j} \left( 1 6 \pi\rho-\frac{2} {3} K{2}+\hat{A}{i j} \hat{A}^{i j} \right) $$

simplifying:

$$ {\cal L}{m} \hat{A}{i j}=e^{-4 \chi} \left[-D{i} D_{j} \alpha+\alpha R_{i j}-8 \pi\alpha S_{i j} \right]{\mathrm{T F}}-\frac{2} {3} \hat{A}{i j} \hat{D}{k} \beta{k}+\alpha\left( K \hat{A}{i j}-2 \hat{A}{i k} \hat{A}^{k} {}_{j} \right) $$

CCZ4 case

compare BSSN:

$$ \mathcal{L}m K{i j}= -D_i D_j \alpha+\alpha\left(R_{i j}+K K_{i j}-2 K_{i k} Kk{ }j\right)+4 \pi \alpha\left[\gamma_{i j}(S-\rho)-2 S_{i j}\right] $$

and z4:

$$ \mathcal{L}m K{i j}= -D_i D_j \alpha+\alpha\left(R{i j} {\color{green}+2 D_{(i} {Z}{j)}}-2 K{i k} Kk{ }j+(K{\color{blue}-2 \Theta}) K{i j}\right)\ +4 \pi \alpha\left(\gamma_{i j}(S-\rho)-2 S_{i j}\right) {\color{green} -\alpha \kappa_1\left(1+\kappa_2\right) \gamma_{i j} \Theta} $$

redeine

$$ \bar{R}{i j}=R{i j}+2 D_{( i} {Z}{j )}{\color{navy}-2 \Theta K{i j}} $$

then as following bssn case:

$$ \begin{aligned} \mathcal{L}m \hat{A}{i j}= & e{-4 \chi}\left[-D_i D_j \alpha+\alpha \bar{R}{i j}-8 \pi \alpha S{i j}\right]{\mathrm{TF}}-\frac{2}{3} \hat{A}{i j} \hat{D}k \beta^k+\alpha\left(K \hat{A}{i j}-2 \hat{A}{i k} \hat{A}k{ }j\right), \ = & -\frac{2}{3} \hat{A}{i j} \hat{D}_k \betak-2 \alpha \hat{A}{i k} \hat{A}k{ }j+\alpha \hat{A}{i j}(K {\color{navy}-2 \Theta}) \ & +e{-4 \chi}\left[-D_i D_j \alpha+\alpha\left(\hat{R}{i j}+\stackrel{\chi}{R}{i j}+2 D{(i} {Z}{j)}-8 \pi S{i j}\right)\right]^{\mathrm{TF}} \end{aligned} $$

Same with Z4c

the navy term come from:

$$ e{-4 \chi}\left[-2 \alpha \Theta K_{i j}\right]{\mathrm{TF}} = e^{-4 \chi}\left[-2 \alpha \Theta A_{i j}\right] = -2 \alpha \Theta \hat{A}_{i j} $$

note: the disapper of the last term in $\mathcal{L}m K{i j}$

recall $\mathcal{L}m K$ form CCZ4:

$$ \begin{aligned} \mathcal{L}m K= & -D_i Di \alpha+\alpha\left(R+2 D_i {Z}i-2 K^{l m} K{l m}+(K-2 \Theta) K\right)-8 \pi \alpha\left(S-\frac{3}{2}(S-\rho)\right) \ & {\color{green}-3 \alpha \kappa_1\left(1+\kappa_2\right) \Theta} +2 \alpha K{i j} K^{i j}, \ \end{aligned} $$

然后过程中会消去,注意是用的此式子进行的消去,不是改版

last term

CCZ4

$$ \begin{aligned} \mathcal{L}_m \hat{\Lambda}i & =\mathcal{L}_m \hat{\Delta}i+2 \mathcal{L}_m\left(\hat{\gamma}{i j} \bar{Z}_j\right) \ & =\mathcal{L}_m \hat{\Delta}i+2 \mathcal{L}_m\left(e{{\color{red}+4\chi}}\bar{Z}i\right)\ & =\mathcal{L}_m \hat{\Delta}i+8 e{4 \chi} \bar{Z}i \mathcal{L}_m \chi+2 e{4 \chi} \mathcal{L}_m \bar{Z}^i \end{aligned} $$

recall

$$ \mathcal{L}_m \bar{Z}_i=\alpha\left(D_j Kj{ }_i-D_i K-8 \pi j_i {\color{green}+D_i \Theta} {\color{blue}-2 \bar{Z}_j Kj{ }_i-\Theta D_i \ln \alpha}{\color{green}-\kappa_1 \bar{Z}_i}\right) $$

蓝标第一项直接消掉了

$$ $$

$$ $$

{\cal L}{m} \chi=-\frac{1} {6} \alpha K+\frac{1} {6} \hat{D}{k} \beta^{k} $$

C.98

$$ \mathcal{L}_m \hat{\Delta}i=\hat{\gamma}{m n} \stackrel{\circ}{D}_m \stackrel{\circ}{D}n \betai-2 \hat{D}_j\left(\alpha \hat{A}{i j}\right)+2 \alpha \hat{A}{m n} \hat{\Delta}i{ }{m n}+\frac{1}{3} \hat{\gamma}{m i} \hat{D}_m \hat{D}_n \betan+\frac{2}{3} \hat{\Delta}i \hat{D}_n \betan $$

$$ \begin{aligned} \mathcal{L}_m \hat{\Lambda}i = &\mathcal{L}_m \hat{\Delta}i + 8 e{4 \chi} \bar{Z}i \mathcal{L}m \chi+2 e{4 \chi} \mathcal{L}_m \bar{Z}i \ = &\hat{\gamma}{m n} \stackrel{\circ}{D}_m \stackrel{\circ}{D}_n \betai-2 \hat{D}j\left(\alpha \hat{A}{i j}\right)+2 \alpha \hat{A}{m n} \hat{\Delta}^i{ }{m n}+\frac{1}{3} \hat{\gamma}{m i} \hat{D}_m \hat{D}_n \betan+\frac{2}{3} \hat{\Delta}i \hat{D}_n \betan \ & +8 e{4 \chi} \bar{Z}i \left(-\frac{1} {6} \alpha K+\frac{1} {6} \hat{D}{k} \beta{k}\right) \ & +2 e{4 \chi}\alpha\left[ e{-4 x}\left(\hat{D}_l \hat{A}{li}+6 \hat{A}{li} \hat{D}_{l}\chi -\frac{2}{3} \hat{D}i k-8\pi \hat{j}i+\hat{D}i \Theta{\color{blue}-\Theta \hat{D}i \ln \alpha} -\kappa_1 \hat\gamma{ij} Z_j \right)\right] \ = &\hat{\gamma}{m n} \stackrel{\circ}{D}_m \stackrel{\circ}{D}_n \betai-2 \hat{D}j\left(\alpha \hat{A}{i j}\right)+2 \alpha \hat{A}{m n} \hat{\Delta}^i{ }{m n}+\frac{1}{3} \hat{\gamma}{m i} \hat{D}_m \hat{D}_n \betan+\frac{2}{3} \hat{\Delta}i \hat{D}_n \betan \ & +8 \hat{\gamma}{ij} {Z}{j} \left(-\frac{1} {6} \alpha K+\frac{1} {6} \hat{D}{k} \beta{k}\right) \ & +2 \alpha \left(\hat{D}l \hat{A}{li}+6 \hat{A}{li} \hat{D}{l}\chi -\frac{2}{3} \hat{D}i k-8\pi \hat{j}i+\hat{D}i \Theta{\color{blue}-\Theta \hat{D}i \ln \alpha} -\kappa_1 \hat\gamma^{ij} Z_j \right) \end{aligned} $$ final $$ \begin{aligned} \mathcal{L}_m \hat{\Lambda}i= & \hat{\gamma}{m n} \stackrel{\circ}{D}_m \stackrel{\circ}{D}_n \betai+{\color{grey}\frac{2}{3} \hat{\Lambda}i \hat{D}_n \betan}+\frac{1}{3} \hat{D}i \hat{D}_n \betan-2 \hat{A}{i k}\left(\hat{D}_k \alpha-6 \alpha \hat{D}k \chi\right)+2 \alpha \hat{A}{j k} \hat{\Delta}i{ }{j k} \ & -\frac{4}{3} \alpha \hat{D}i K+2 \hat{\gamma}{i k}\left({\color{green}\alpha \hat{D}_k \Theta} {\color{blue}-\Theta \hat{D}_k \alpha} {\color{grey}-\frac{2}{3} \alpha K \bar{Z}_k}\right)-16 \pi \alpha \hat{\gamma}{i j} j_j {\color{green}-2 \alpha \kappa_1 \hat{\gamma}{i j} \bar{Z}_j} \end{aligned} $$

退回BSSN:$2Z_j \to 0, \Lambdai \to \Deltai$

$$ \begin{aligned} \mathcal{L}_m \hat{\Delta}i= & \hat{\gamma}{m n} \stackrel{\circ}{D}_m \stackrel{\circ}{D}_n \betai-2 \hat{A}{i m} \hat{D}m \alpha+2 \alpha \hat{A}{m n} \hat{\Delta}i{ }{m n}+2 \alpha\left(6 \hat{A}{i j} \hat{D}_j \chi-\frac{2}{3} \hat{\gamma}{i j} \hat{D}_j K-8 \pi \hat{j}^i\right) \ & +\frac{1}{3}\left[\hat{D}i\left(\hat{D}_n \betan\right)+2 \hat{\Delta}i \hat{D}_n \betan\right] . \end{aligned} $$

Z4c case:

少的项:

Leave a Comment

已有 1 条评论
  1. a a

    sudo smartctl -a /dev/nvme0n1
    smartctl 7.4 2023-08-01 r5530 [x86_64-linux-6.11.0-17-generic] (local build)
    Copyright (C) 2002-23, Bruce Allen, Christian Franke, www.smartmontools.org

    === START OF INFORMATION SECTION ===
    Model Number: WD_BLACK SN770 1TB
    Serial Number: 241638803412
    Firmware Version: 731100WD
    PCI Vendor/Subsystem ID: 0x15b7
    IEEE OUI Identifier: 0x001b44
    Total NVM Capacity: 1,000,204,886,016 [1.00 TB]
    Unallocated NVM Capacity: 0
    Controller ID: 0
    NVMe Version: 1.4
    Number of Namespaces: 1
    Namespace 1 Size/Capacity: 1,000,204,886,016 [1.00 TB]
    Namespace 1 Formatted LBA Size: 512
    Namespace 1 IEEE EUI-64: 001b44 8b47d358a0
    Local Time is: Thu Jun 5 18:45:08 2025 UTC
    Firmware Updates (0x14): 2 Slots, no Reset required
    Optional Admin Commands (0x0017): Security Format Frmw_DL Self_Test
    Optional NVM Commands (0x00df): Comp Wr_Unc DS_Mngmt Wr_Zero Sav/Sel_Feat Timestmp Verify
    Log Page Attributes (0x7e): Cmd_Eff_Lg Ext_Get_Lg Telmtry_Lg Pers_Ev_Lg Log0_FISE_MI Telmtry_Ar_4
    Maximum Data Transfer Size: 256 Pages
    Warning Comp. Temp. Threshold: 84 Celsius
    Critical Comp. Temp. Threshold: 88 Celsius
    Namespace 1 Features (0x02): NA_Fields

    Supported Power States
    St Op Max Active Idle RL RT WL WT Ent_Lat Ex_Lat
    0 + 5.00W 5.00W - 0 0 0 0 0 0
    1 + 3.30W 3.00W - 0 0 0 0 0 0
    2 + 2.20W 2.00W - 0 0 0 0 0 0
    3 - 0.0150W - - 3 3 3 3 1500 2500
    4 - 0.0050W - - 4 4 4 4 10000 6000
    5 - 0.0033W - - 5 5 5 5 176000 25000

    Supported LBA Sizes (NSID 0x1)
    Id Fmt Data Metadt Rel_Perf
    0 + 512 0 2
    1 - 4096 0 1

    === START OF SMART DATA SECTION ===
    SMART overall-health self-assessment test result: PASSED

    SMART/Health Information (NVMe Log 0x02)
    Critical Warning: 0x00
    Temperature: 41 Celsius
    Available Spare: 100%
    Available Spare Threshold: 10%
    Percentage Used: 0%
    Data Units Read: 927,297 [474 GB]
    Data Units Written: 785,573 [402 GB]
    Host Read Commands: 1,560,735
    Host Write Commands: 3,520,033
    Controller Busy Time: 7
    Power Cycles: 743
    Power On Hours: 23
    Unsafe Shutdowns: 26
    Media and Data Integrity Errors: 0
    Error Information Log Entries: 0
    Warning Comp. Temperature Time: 0
    Critical Comp. Temperature Time: 0
    Temperature Sensor 1: 49 Celsius
    Temperature Sensor 2: 41 Celsius

    Error Information (NVMe Log 0x01, 16 of 256 entries)
    No Errors Logged

    Read Self-test Log failed: Invalid Field in Command (0x4002)
    ubuntu@ubuntu:~$ sudo smartctl -a /dev/nvme1n1
    smartctl 7.4 2023-08-01 r5530 [x86_64-linux-6.11.0-17-generic] (local build)
    Copyright (C) 2002-23, Bruce Allen, Christian Franke, www.smartmontools.org

    === START OF INFORMATION SECTION ===
    Model Number: SanDisk Ultra 3D NVMe
    Serial Number: 2043DC800463
    Firmware Version: 211070WD
    PCI Vendor/Subsystem ID: 0x15b7
    IEEE OUI Identifier: 0x001b44
    Total NVM Capacity: 1,000,204,886,016 [1.00 TB]
    Unallocated NVM Capacity: 0
    Controller ID: 1
    NVMe Version: 1.4
    Number of Namespaces: 1
    Namespace 1 Size/Capacity: 1,000,204,886,016 [1.00 TB]
    Namespace 1 Formatted LBA Size: 512
    Namespace 1 IEEE EUI-64: 001b44 8b49028c9d
    Local Time is: Thu Jun 5 18:46:11 2025 UTC
    Firmware Updates (0x14): 2 Slots, no Reset required
    Optional Admin Commands (0x0017): Security Format Frmw_DL Self_Test
    Optional NVM Commands (0x005f): Comp Wr_Unc DS_Mngmt Wr_Zero Sav/Sel_Feat Timestmp
    Log Page Attributes (0x1e): Cmd_Eff_Lg Ext_Get_Lg Telmtry_Lg Pers_Ev_Lg
    Maximum Data Transfer Size: 128 Pages
    Warning Comp. Temp. Threshold: 80 Celsius
    Critical Comp. Temp. Threshold: 85 Celsius
    Namespace 1 Features (0x02): NA_Fields

    Supported Power States
    St Op Max Active Idle RL RT WL WT Ent_Lat Ex_Lat
    0 + 3.50W 2.90W - 0 0 0 0 0 0
    1 + 2.70W 1.80W - 0 0 0 0 0 0
    2 + 1.90W 1.50W - 0 0 0 0 0 0
    3 - 0.0200W - - 3 3 3 3 3900 11000
    4 - 0.0050W - - 4 4 4 4 5000 39000

    Supported LBA Sizes (NSID 0x1)
    Id Fmt Data Metadt Rel_Perf
    0 + 512 0 2
    1 - 4096 0 1

    === START OF SMART DATA SECTION ===
    SMART overall-health self-assessment test result: FAILED!
    - NVM subsystem reliability has been degraded
    - media has been placed in read only mode

    SMART/Health Information (NVMe Log 0x02)
    Critical Warning: 0x0c
    Temperature: 50 Celsius
    Available Spare: 100%
    Available Spare Threshold: 10%
    Percentage Used: 1%
    Data Units Read: 32,969,823 [16.8 TB]
    Data Units Written: 48,751,891 [24.9 TB]
    Host Read Commands: 547,258,975
    Host Write Commands: 763,735,226
    Controller Busy Time: 1,644
    Power Cycles: 5,410
    Power On Hours: 5,472
    Unsafe Shutdowns: 70
    Media and Data Integrity Errors: 306,209
    Error Information Log Entries: 306,776
    Warning Comp. Temperature Time: 0
    Critical Comp. Temperature Time: 0

    Error Information (NVMe Log 0x01, 16 of 256 entries)
    Num ErrCount SQId CmdId Status PELoc LBA NSID VS Message
    0 306796 2 0xa0e8 0x4008 - 6695923 1 0x01 Data Transfer Error
    1 306795 2 0xa0e7 0x4008 - 6695922 1 0x01 Data Transfer Error
    2 306794 2 0xa0e6 0x4008 - 6695921 1 0x01 Data Transfer Error
    3 306793 2 0xa0e5 0x4008 - 6695920 1 0x01 Data Transfer Error
    4 306792 2 0x40ec 0x4008 - 6695927 1 0x01 Data Transfer Error
    5 306791 2 0x10eb 0x4008 - 6695926 1 0x01 Data Transfer Error
    6 306790 2 0x40ea 0x4008 - 6695925 1 0x01 Data Transfer Error
    7 306789 2 0x90e9 0x4008 - 6695924 1 0x01 Data Transfer Error
    8 306788 2 0x90e8 0x4008 - 6695923 1 0x01 Data Transfer Error
    9 306787 2 0x90e7 0x4008 - 6695922 1 0x01 Data Transfer Error
    10 306786 2 0x90e6 0x4008 - 6695921 1 0x01 Data Transfer Error
    11 306785 2 0x90e5 0x4008 - 6695920 1 0x01 Data Transfer Error
    12 306784 2 0x30ec 0x4008 - 6695927 1 0x01 Data Transfer Error
    13 306783 2 0x00eb 0x4008 - 6695926 1 0x01 Data Transfer Error
    14 306782 2 0x30ea 0x4008 - 6695925 1 0x01 Data Transfer Error
    15 306781 2 0x80e9 0x4008 - 6695924 1 0x01 Data Transfer Error
    ... (240 entries not read)

    Read Self-test Log failed: Invalid Field in Command (0x4002)

    ubuntu@ubuntu:~$ lsblk -o NAME,MODEL,SIZE,RO,TYPE,MOUNTPOINT
    NAME MODEL SIZE RO TYPE MOUNTPOINT
    loop0 1.7G 1 loop /rofs
    loop1 522.8M 1 loop
    loop2 895.7M 1 loop
    loop3 73.9M 1 loop /snap/core22/1748
    loop4 4K 1 loop /snap/bare/5
    loop5 258M 1 loop /snap/firefox/5751
    loop6 11.1M 1 loop /snap/firmware-updater/167
    loop7 516M 1 loop /snap/gnome-42-2204/202
    loop8 91.7M 1 loop /snap/gtk-common-themes/1535
    loop9 10.8M 1 loop /snap/snap-store/1248
    loop10 44.4M 1 loop /snap/snapd/23545
    loop11 568K 1 loop /snap/snapd-desktop-integration
    loop12 210.4M 1 loop /snap/thunderbird/644
    loop13 112.4M 1 loop /snap/ubuntu-desktop-bootstrap/
    sda TransMemory 14.4G 0 disk
    ├─sda1 5.9G 0 part /cdrom
    ├─sda2 5M 0 part
    ├─sda3 300K 0 part
    └─sda4 8.5G 0 part /var/crash
    mmcblk0 59.6G 0 disk
    └─mmcblk0p1 59.6G 0 part
    nvme1n1 SanDisk Ultra 3D NVMe 931.5G 0 disk
    ├─nvme1n1p1 100M 0 part
    ├─nvme1n1p2 16M 0 part
    ├─nvme1n1p3 399.1G 0 part
    ├─nvme1n1p4 838M 0 part
    └─nvme1n1p5 531.5G 0 part
    nvme0n1 WD_BLACK SN770 1TB 931.5G 0 disk
    ├─nvme0n1p1 16M 0 part
    └─nvme0n1p2 931.5G 0 part